2019
Quick information
Type Seminar
Date October 04, 2019 - 11:00
Time 11:00
Location Room 105 | GANIL, Caen | France
Share this event
More events
Seminar
June 27, 2025 - 11:00
Nuclear isomers: discovery and application
Room 105, GANIL, Caen | France
Seminar
June 24, 2025 - 11:00
New Symmetry Energy Constraint from a Model-Independent Measurement of Isospin Diffusion with INDRA-FAZIA
Guest House, GANIL, Caen | France
Seminar
May 20, 2025 - 11:00
K=8- isomer of 254No : one small step for Super Heavy Element physics
Room alpha, GANIL, Caen | France

Unraveling the internal structure of the proton at Jefferson Lab and the future EIC

Carlos Muñoz Camacho (Institut de Physique Nucléaire d’Orsay, France)

Understanding Quantum Chromodynamics (QCD) at large distances remains one of the main outstanding problems of nuclear physics. Investigating the internal structure of hadrons probes QCD in the non-perturbative domain and can help unravel the spatial extensions of nature’s building blocks. Deeply Virtual Compton Scattering (DVCS) is the easiest reaction that accesses the Generalized Parton Distributions (GPDs) of the nucleon. GPDs offer the exciting possibility of mapping the 3-D internal structure of protons and neutrons by providing a transverse image of the constituents as a function of their longitudinal momentum. A vigorous experimental program is currently pursued at Jefferson Lab (JLab) to study GPDs through DVCS. New results recently published will be shown and discussed. We will give with an outlook on the Upgrade of JLab to 12 GeV, which will allow the full exploration of the valence quark structure of nucleons and nuclei and promises the extraction of full tomographic images. We will conclude discussing the future Electron-Ion Collider (EIC), which will complete this program by studying the gluon content of nucleons and nuclei.

 

Practical information:

11h00 GANIL seminar room (105)
Coffee will be served 15mn before