2025
Quick information
Type Seminar
Date August 27, 2025 - 11:00
Time 11:00
Location Room 105, GANIL, Caen | France
Share this event
More events
Conference
May 24 > 28, 2027
Fusion27 : Low energy Nuclear Dynamics
Bordeaux,| France
Conference
June 15 > 17, 2026
IC3Ddose 2026
GANIL, Caen | France
Conference
September 22 > 26, 2025
EuNPC 2025
Moho, Caen | France

Deep Learning and Hardware Acceleration for AI Inference

Frédéric Druillole (LP2I Bordeaux)

Deep learning is a subfield of machine learning where models, inspired by the human brain, learn from large datasets through neural networks. The training process relies on two key elements:
•Loss function: It measures the difference between the model’s prediction and the actual target. The goal of training is to minimize this loss.
•Gradient Descent Algorithm: This optimization technique updates the model’s weights by calculating the gradient (slope) of the loss function with respect to each weight.
Once trained, deep learning models—such as DNNs (Deep Neural Networks), CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LNNs (Liquid Neural Networks), or Neural ODEs—can bedeployed for inference on a variety of hardware platforms. To meet real-time and power-efficient constraints, AI inference is increasingly performed on specialized hardware.
•FPGAs (Field Programmable Gate Arrays) ,GPUs (Graphics Processing Units), Edge Processors (suchas RISC-V AI cores, STM32, MAX78000).
Modern Edge AI computing and Spatial Accelerators (logic-based architectures) bring inference capabilitiescloser to the data source, enabling fast, efficient, and secure decision-making at the edge. These architectures are optimized for executing AI models with minimal latency and power consumption, making them ideal for robotics, autonomous systems, IoT, and real-time industrial or scientific applications.

The R&T Think initiative is dedicated to exploring and evaluating emerging AI-capable components by testing them with simple, interpretable models. This early-stage research helps assess their computational performance, energy efficiency, and integration potential.
Once validated, the most promising hardware–model combinations are used to design advanced AI solutions tailored to the specific needs of scientific instruments in experimental physics.

————————
 
La lecture du signal des détecteurs nécessitent une électronique qui perturbe, transforme le signal intrinsèque créé dans le volume du détecteur.
Les réseaux de neurones permettent de fabriquer des fonctions transformant l’information X en Y suivant un apprentissage automatique. THINK cherche à utiliser l’apprentissage profond au plus près du détecteur pour optimiser la mesure.  Je m’attacherai à présenter la méthodologie et les travaux en cours pour des applications de physique.  L’objectif est de donner une perspective de l’utilisation de l’IA pour rendre nos systèmes de détection plus intelligent.