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Internship in data science for accelerator physics

Explainable state observers and interpretable classification of faults in
RF superconducting cavities

SPIRAL?2 is a state-of-the-art superconducting LINAC, housing 26 cavities cooled at 4.2 K.
These cavities are subject to faults such as quenches, microphonics, and thermoacoustic
oscillations, which compromise beam availability and reliability. The current monitoring chain
is based on FPGA-triggered LLRF post-mortem buffers, generating high-dimensional time
series of RF, cryogenic, and control signals. While operators can diagnose obvious failures,
many events remain ambiguous [4,5].

In control theory, state observers (Kalman filters, Luenberger observers, Unknown Input
Observers) have long been used for fault detection: they reconstruct hidden states and
generate residuals—differences between predicted and measured outputs—that act as natural
indicators of anomalies [1-3]. In anomaly detection, residuals are analyzed through statistical
tests, clustering, or machine learning. Modern extensions combine observer-based prediction
with data-driven self-supervised classifiers, producing both timely alarms and interpretable
diagnostics [6].

This internship will explore this classical but under-used connection in accelerator physics:
building simple observers for SPIRAL2 cavities, generating residuals, and testing how they
can feed anomaly detection and classification pipelines, paving the way for larger-scale
developments in a PhD [4,5].

Explainability focus: Depending on progress and in addition to implementing observers and
classifiers, this internship will explore post-hoc explainability methods (e.g. SHAP, LIME) on
observer residuals and classification outputs. The aim is to identify which RF and cryogenic
signals contribute most to a failure class. This aligns with insights from recent accelerator Al
research that feature attribution, and causal graphs make anomaly detection usable and
trustworthy for operators [6].

Objectives

- Implement a simple virtual state observer (Luenberger/Kalman) for cavity RF signals [1-3].

- Extract residuals and test anomaly detection methods (thresholds, clustering, first self-
supervised models) [4-6].

- Focus case: discriminate between true quenches and false alarms.

- Produce a demonstration dashboard for visualizing observer states, residuals, and
classifications.

Expected outcome

- Feasibility study of observer-based anomaly detection.

- First dataset benchmarks and candidate methods.

- Deliverables that pave the way for the PhD (advanced observers, explainability,
generalisation).

Expected skills
Python, signal processing, ML basics, control/observer theory

This work leads to a PhD-thesis.
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