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Description:

Particle accelerators and radioactive beam production facilities are increasingly complex
systems, producing massive volumes of heterogeneous time-series and spectral data. Two
strategic GANIL facilities illustrate complementary challenges:

e SPIRAL2, with its 26 superconducting cavities, faces instabilities (quenches,
multipacting, microphonics) that reduce machine reliability and beam availability.
Current anomaly monitoring pipelines (e.g. Time2Feat, tsfresh) have demonstrated
clustering of failures but still lack causal interpretability and predictive capability
[Tennant et al., 2020; Boukela et al., 2024].

e SPIRAL1, producing radioactive ion beams, requires robust isotope identification
through noisy B—y spectroscopy. Classical analysis fails under high background, beam
heating, and overlapping decay lines [Kamuda et al., 2020].

Across engineering domains, state observers are a cornerstone of fault detection and
diagnosis [Frank, 1990; Chen & Patton, 1999; Isermann, 2006; Ding, 2008]. They reconstruct
hidden states and provide residuals that quantify discrepancies between predicted and
observed behaviors. These residuals underpin anomaly detection (statistical thresholds,
clustering, supervised or self-supervised classification). Observers also act as predictors,
enabling early fault alarms and prognostics.

Modern research converges on hybrid pipelines: physics-based observers generate
interpretable residuals, while data-driven ML models perform anomaly isolation and
explainability [Edelen et al., 2020].

This PhD project positions GANIL at the forefront of this convergence. It will build observer-
based interpretable Al frameworks for two critical domains:

1. SPIRAL2 - interpretable anomaly detection and classification of cavity failures.

2. SPIRAL1 — observer-assisted, causal isotope identification under noise.
By uniting observer theory, anomaly detection, prediction, and explainability, this research will
create generalizable methods for accelerator operations and nuclear spectroscopy, aligned
with international initiatives.

Explainability dimension:
This PhD will embed explainability systematically into the observer+Al framework:
e Observer-based interpretability: residuals are inherently explainable as prediction
errors relative to physics-based models [Isermann, 2006].
e Feature attribution: SHAP [Lundberg & Lee, 2017] and LIME [Ribeiro et al., 2016] will
be applied to classifiers to highlight the most influential RF or spectral variables.
e Causal discovery: cause—effect graphs will be built from accelerator and spectroscopy
data, extending recent surveys [Assaad et al., 2022].
¢ Uncertainty-aware explainability: predictions will be coupled with calibrated confidence
scores (e.g. conformal prediction) to avoid overconfident false alarms.
¢ Human-in-the-loop trust: explanations will be tested with domain experts (RF operators,
nuclear physicists) to ensure usability and adoption.
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